问题标题:
f(x)=cosxsin2x的最大值
问题描述:
f(x)=cosxsin2x的最大值
傅志斌回答:
f(x)=cosx*(2sinxcosx)=2sinxcos^x=2sinx*(1-sin^x)[sin^x,cos^x表示平方]令sinx=t,则-1≦t≦1,要求f(x)的最大值,即求函数g(t)=2t-2t^3在[-1,1]上的最大值令g'(t)=2-6t^=0得到t=√3/3或-√3/3,比较两个极值点和两...
邓成玉回答:
其实这题是今年广西卷的选择题最后一题。谢拉,我只想确认看我选对了没。哈,选对了。
查看更多