问题标题:
勾股定理的几种证法
问题描述:
勾股定理的几种证法
龚美华回答:
证法1
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再做一个边长为c的正方形.把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.
过点Q作QP‖BC,交AC于点P.
过点B作BM⊥PQ,垂足为M;再过点
F作FN⊥PQ,垂足为N.
∵∠BCA=90°,QP‖BC,
∴∠MPC=90°,
∵BM⊥PQ,
∴∠BMP=90°,
∴BCPM是一个矩形,即∠MBC=90°.
∵∠QBM+∠MBA=∠QBA=90°,
∠ABC+∠MBA=∠MBC=90°,
∴∠QBM=∠ABC,
又∵∠BMP=90°,∠BCA=90°,BQ=BA=c,
∴RtΔBMQ≌RtΔBCA.
同理可证RtΔQNF≌RtΔAEF.即a²+b²=c²
证法2
作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c.再作一个边长为c的正方形.把它们拼成如图所示的多边形.
分别以CF,AE为边长做正方形FCJI和AEIG,
∵EF=DF-DE=b-a,EI=b,
∴FI=a,
∴G,I,J在同一直线上,
∵CJ=CF=a,CB=CD=c,
∠CJB=∠CFD=90°,
∴RtΔCJB≌RtΔCFD,
同理,RtΔABG≌RtΔADE,
∴RtΔCJB≌RtΔCFD≌RtΔABG≌RtΔADE
∴∠ABG=∠BCJ,
∵∠BCJ+∠CBJ=90°,
∴∠ABG+∠CBJ=90°,
∵∠ABC=90°,
∴G,B,I,J在同一直线上,
a²+b²=c²
证法3
作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结
BF、CD.过C作CL⊥DE,
交AB于点M,交DE于点L.
∵AF=AC,AB=AD,
∠FAB=∠GAD,
∴ΔFAB≌ΔGAD,
∵ΔFAB的面积等于,
ΔGAD的面积等于矩形ADLM
的面积的一半,
∴矩形ADLM的面积=.
同理可证,矩形MLEB的面积=.
∵正方形ADEB的面积
=矩形ADLM的面积+矩形MLEB的面积
∴即a²+b²=c²
查看更多