问题标题:
在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.
问题描述:

在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.

贾宏博回答:
  答:△PDQ为等边三角形.证明:∵四边形ABCD是菱形,∠A=60°,∴AD=AB=BD,∠ADB=∠ABD=∠CBD=∠DBC=60°,∵在△BDQ和△ADP中,AD=BD∠DAP=∠DBQAP=BQ,∴△BDQ≌△ADP(SAS),∴DP=DQ,∠ADP=∠QDB,又∵∠AD...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.试判断△PDQ的形状,并证明.|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元