问题标题:
【椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足角F1MF2=π/3(1)求椭圆的离心率e的取值范围(2)当离心率e取得最小值时,点N(0,3根号3)到椭圆上的点最远距离为4】
问题描述:
椭圆C:x2/a2+y2/b2=1(a>b>0)的两个焦点F1(-c,0)、F2(c,0),M是椭圆C上一点,且满足角F1MF2=π/3
(1)求椭圆的离心率e的取值范围(2)当离心率e取得最小值时,点N(0,3根号3)到椭圆上的点最远距离为4根号3,求此时椭圆C的方程(3)设O为坐标原点,P是椭圆C上的一个动点,试求t=(绝对值PF1-PF2绝对值/绝对值OP的取值范围
刘玉蓉回答:
(1)由椭圆定义,c/a=|F1F2|/(|MF1|+|MF2|),
设∠MF1F2=α,因∠F1MF2=π/3,故0
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日