问题标题:
设{an}是等差数列,且首项a1>0,公差d>0求证:1/a1a2+1/a2a3+…+1/anan+1=n/a1(a1+nd)
问题描述:

设{an}是等差数列,且首项a1>0,公差d>0求证:1/a1a2+1/a2a3+…+1/anan+1=n/a1(a1+nd)

姜重然回答:
  1/a1a2+1/a2a3+…+1/anan+1   =[(a2-a1)/a1a2+(a3-a2)/a2a3+…+(a(n+1)-a(n))/anan+1]/d   =[1/a1-1/a2+1/a2-1/a3+...+1/an-1/a(n+1)]/d   =[1/a1-1/a(n+1)]/d   =(a(n+1)-a1)/a1a(n+1)d   =nd/a1a(n+1)d   =n/a1(a1+nd)
查看更多
数学推荐
热门数学推荐