问题标题:
已知a.b为锐角,且满足3sin^2a+2sin^2b=0.求证a+2b=π/2
问题描述:
已知a.b为锐角,且满足3sin^2a+2sin^2b=0.求证a+2b=π/2
鲍文霞回答:
题目有误,条件不足
已知a.b为锐角,且满足3sin^2a+2sin^2b=0.3sin(2A)-2sin(2B)=0求证a+2b=π/2
∵3sin^2A+2sin^2B=1
∴3sin^2A=cos(2B)
∵3sin(2A)-2sin(2B)=0
∴3sinAcosA=sin(2B)
把得到的两个式子相除,得
tanA=cot(2B)
∴tanA*tan(2B)=1
∵A、B为锐角,
∴A+2B=90°
纪洪波回答:
题目没问题
鲍文霞回答:
你可先去问老师,如是教辅书上的题目,则出错可能很大。
纪洪波回答:
报纸上的
鲍文霞回答:
报纸上的也可能出错,一是看有没有答案,二是直接问老师。如觉得我的建议正确,再来采纳我的答案。
纪洪波回答:
老师讲没错
鲍文霞回答:
你直接向老师请教如何做,再把老师的解答理解就行了,如愿意再把老师的解答贴出来,让我学习学习。
纪洪波回答:
现在放假
鲍文霞回答:
那你可向同学问,或把此题留到开学再问。
查看更多