问题标题:
【三重积分计算∫∫∫x+y+zdxdydz为什么等于0?积分区域是x^2+y^2+z^2≦1.为什么书上都没算直接就给出零?跟区域对称性和函数奇偶性有关吗?想了半天就是想不出来,向高手求救,想不出来急死了.】
问题描述:

三重积分计算

∫∫∫x+y+zdxdydz为什么等于0?积分区域是x^2+y^2+z^2≦1.为什么书上都没算直接就给出零?跟区域对称性和函数奇偶性有关吗?想了半天就是想不出来,向高手求救,想不出来急死了.

林鹰回答:
  这里有一个幻灯片其实,三重积分,就是把一重积分和二重积分的扩展三重积分及其计算一,三重积分的概念将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数,就得到三重积分的定义其中dv称为体积元,其它...
查看更多
数学推荐
热门数学推荐