问题标题:
【一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).(1)求该函数的解析式,并说明点(1,2)是否在函数图象上;(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点】
问题描述:
一次函数y=kx+b的图象与x、y轴分别交于点A(2,0),B(0,4).
(1)求该函数的解析式,并说明点(1,2)是否在函数图象上;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点的坐标.
焦守江回答:
(1)∵y=kx+b过A(2,0),B(0,4),
∴将点A、B的坐标代入y=kx+b计算得,
k=-2,b=4,
∴解析式为:y=-2x+4;
当x=1时,y=-2×1+4=2,所以点在函数图象上.
(2)存在一点P,使PC+PD最小.
∵0(0,0),A(2,0),且C为AO的中点,
∴点C的坐标为(1,0),
则C关于y轴的对称点为C′(-1,0),
又∵B(0,4),A(2,0)且D为AB的中点,
∴点D的坐标为(1,2),
连接C′D,设C′D的解析式为y=kx+b,
有2=k+b0=−k+b
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日