问题标题:
【求解微分方程:2x(ye∧x²+2x²)dx=e∧x²dy式子里的数学符号只有+、=和∧(次方符号)其余为数字和未知数】
问题描述:

求解微分方程:2x(ye∧x²+2x²)dx=e∧x²dy

式子里的数学符号只有+、=和∧(次方符号)其余为数字和未知数

樊雅萍回答:
  2x(ye^x^2+2x^2)dx=e^x^2dy   ye^x^2dx^2-e^x^2dy=-4x^3dx   yde^x^2/e^x^4-dy/e^x^2=de^(-x^4)   d(y/e^x^2)=de^(-x^4)   y/e^x^2=e^(-x^4)+C   通解y=e^(-x^2)+Ce^x^2
查看更多
数学推荐
热门数学推荐