问题标题:
各项均为正数的数列{an}的前n项和为Sn满足2Sn=an(an+1),n∈N*,求an,我想问(2)设cn={a·n为奇数;3*2^(a)+1·n为偶数},求前2n项的和T
问题描述:

各项均为正数的数列{an}的前n项和为Sn满足2Sn=an(an+1),n∈N*,求an

,我想问(2)设cn={a·n为奇数;3*2^(a)+1·n为偶数},求前2n项的和T

黄龙杨回答:
  (1)   2Sn=an(an+1)(1)   n=1   2a1=a1(a1+1)   a1^2-a1=0   a1=1   2S(n-1)=a(n-1)(a(n-1)+1)(2)   (1)-(2)   2an=(an)^2+an-[a(n-1)]^2-a(n-1)   (an)^2-[a(n-1)]^2-[an+a(n-1)]=0   [an+a(n-1)].[an-a(n-1)-1]=0   an-a(n-1)-1=0   an-a(n-1)=1   {an}是等差数列,d=1   an-a1=n-1   an=n   (2)   cn=a(n+1);nisodd   =3.2^(a(n-1))+1;niseven   c1+c3+...+c(2n-1)   =a2+a4+...+a(2n)   =2+4+...+2n   =(n+1)n(3)   c2+c4+.+c(2n)   =(3.2^1+1)+(3.2^3+1)+.+(3.2^(2n-1)+1)   =n+2[2^(2n)-1](4)   T(2n)=c1+c2+.+c(2n)   =(n+1)n+n+2[2^(2n)-1]   =(n+2)n+2[2^(2n)-1]
查看更多
数学推荐
热门数学推荐