问题标题:
已知首项都是1的数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+3bnbn+1=0(I)令Cn=anbn,求数列{cn}的通项公式;(Ⅱ)若数列{bn}为各项均为正数的等比数列,且b32=4b2•b6,求数列{an}的前n项和Sn.
问题描述:

已知首项都是1的数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+3bnbn+1=0

(I)令Cn=anbn,求数列{cn}的通项公式;

(Ⅱ)若数列{bn}为各项均为正数的等比数列,且b32=4b2•b6,求数列{an}的前n项和Sn.

沈韬回答:
  (I)∵首项都是1的数列{an},{bn}(bn≠0,n∈N*)满足anbn+1-an+1bn+3bnbn+1=0,∴anbn−an+1bn+1+3=0,即an+1bn+1−anbn=3,cn+1-cn=3.∴数列{cn}是等差数列,首项c1=1,公差d=3.∴cn=c1+(n-1)d=3n-2.(II...
查看更多
其它推荐
热门其它推荐