问题标题:
一个简单而又迷惑的求导问题已知:F=x+x*sin(3y),a=x*cos(y),b=x*sin(y)求导:dF/da,dF/db
问题描述:

一个简单而又迷惑的求导问题

已知:F=x+x*sin(3y),a=x*cos(y),b=x*sin(y)

求导:dF/da,dF/db

胡维庆回答:
  由链式法则,   ∂F/∂a=(∂F/∂x)(∂x/∂a)+(∂F/∂y)(∂y/∂a);   ∂F/∂b=(∂F/∂x)(∂x/∂b)+(∂F/∂y)(∂y/∂b).   由F的表达式易知∂F/∂x=1+sin(3y),∂F/∂y=3x*cos(3y).   对a=x*cos(y)两边取全微分,得   (1)da=cos(y)dx-x*sin(y)dy;   对b=x*sin(y)两边取全微分,得   (2)db=sin(y)dx+x*cos(y)dy.   (1)*cos(y)+(2)*sin(y),得   cos(y)*da+sin(y)*db=[cos^2(y)+sin^2(y)]dx=dx,   所以∂x/∂a=cos(y),∂x/∂b=sin(y);   (1)*sin(y)-(2)*cos(y),得   sin(y)*da-cos(y)*db=[-x*sin^2(y)-x*cos^2(y)]dy=-x*dy,   所以∂y/∂a=-sin(y)/x,∂y/∂b=cos(y)/x.   最后代入链式法则得   ∂F/∂a=(1+sin(3y))(cos(y))+(3x*cos(3y))(-sin(y)/x)=cos(y)+cos(y)sin(3y)-3sin(y)cos(3y);   ∂F/∂b=(1+sin(3y))(sin(y))+(3x*cos(3y))(cos(y)/x)=sin(y)+sin(y)sin(3y)+3cos(y)cos(3y)
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《一个简单而又迷惑的求导问题已知:F=x+x*sin(3y),a=x*cos(y),b=x*sin(y)求导:dF/da,dF/db|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元