问题标题:
如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于
问题描述:

如图①,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从点A开始沿边AC向点C以每秒1个单位长度的速度运动,动点Q从点C开始沿边CB向点B以每秒2个单位长度的速度运动,过点P作PD∥BC,交AB于点D,连接PQ,点P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒(t≥0)。
(1)直接用含t的代数式分别表示:QB=______,PD=______;
(2)是否存在t的值,使四边形PDBQ为菱形?若存在,求出t的值;若不存在,说明理由.并探究如何改变点Q的速度(匀速运动),使四边形PDBQ在某一时刻为菱形,求点Q的速度;
(3)如图②,在整个运动过程中,求出线段PQ中点M所经过的路径长。

毕艳冰回答:
  (1)QB=8-2t,PD=t;(2)不存在.在Rt△ABC中,∠C=90°,AC=6,BC=8,∴AB=10,∵PD∥BC,∴△APD∽△ACB,∴,即:,∴AD=t,∴BD=AB-AD=10-t,∵BQ∥DP,∴当BQ=DP时,四边形PDBQ...
查看更多
数学推荐
热门数学推荐