问题标题:
图示为竖直面内的光滑半圆弧轨道,O为圆心,A、B是位于同一水平线的圆弧上的两点,C为圆弧最低点,AC间有一光滑直杆,OA与竖直方向的夹角为θ(θ<10°).现有可视为质点的甲乙两小球
问题描述:
图示为竖直面内的光滑半圆弧轨道,O为圆心,A、B是位于同一水平线的圆弧上的两点,C为圆弧最低点,AC间有一光滑直杆,OA与竖直方向的夹角为θ(θ<10°).现有可视为质点的甲乙两小球分别套在AC直杆、BC圆弧上(图中未画出),另一可视为质点的小球丙处于O点.现让甲、乙、丙三小球分别从A、B、O点无初速释放,到达C处所经过的时间分别为t1、t2、t3,不计空气阻力,不考虑三小球的碰撞,则关于时间t1、t2、t3的大小关系,下列说法正确的是()
A.t1<t3
B.t1>t3
C.t1<t2
D.t1=t2
李宏回答:
A、B、物体沿着位于同一竖直圆上所有光滑细杆由静止下滑,到达圆周最低点的时间相等,所有无论θ多大,t1是不变的,证明如下:由几何关系可知lAC=2Rsinα物体从A运动到C的过程中加速度a=gsinα根据匀加速运动位移时...
查看更多