问题标题:
如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O交斜边AB于点D,E为AC上一点,延长ED、CB交于F点,且∠A+∠F=∠ABC.(1)求证:直线EF为⊙O的切线;(2)若tan∠A=34,求tan∠F的值.
问题描述:
如图,在Rt△ABC中,∠ACB=90°,以BC为直径作⊙O交斜边AB于点D,E为AC上一点,延长ED、CB交于F点,且∠A+∠F=∠ABC.
(1)求证:直线EF为⊙O的切线;
(2)若tan∠A=
董得义回答:
(1)证明:连OD、DC,如图,
∵BC为直径,
∴∠BDC=90°,
∴∠ADC=90°,
∵∠ABC=∠F+∠BDF,
而∠A+∠F=∠ABC,
∴∠BDF=∠A,
又∵∠BDF=∠ADE,
∴∠A=∠ADE,
而∠ECD+∠A=∠EDC+∠ADE=90°,
∴∠ECD=∠EDC,
而∠ACB=90°,OD=OC,
∴∠EDC+∠ODC=∠ECD+∠OCD=90°,
∴直线EF为⊙O的切线;
(2)过D作DH⊥BC于H,如图,
∵∠ODH+∠DOB=90°,∠F+∠DOB=90°,
∴∠ODH=∠F,
∵∠A+∠ACD=90°,∠ACD+∠DCB=90°,
∴∠A=∠DCB,
在Rt△BCD中,tan∠DCB=DBCD
查看更多