问题标题:
高中数学数列特征根和不动点法解通项公式的原理是什么,
问题描述:
高中数学数列特征根和不动点法解通项公式的原理是什么,
汪文津回答:
这个真要解释清楚需要用到大学数学中线性代数和组合数学的知识,很麻烦,高中阶段你只要会用并能证明其正确性即可……
证明如下:
特徵方程法:
a(n+2)=p*a(n+1)+q*an
其特征方程为x^2-p*x-q=0
i.若其有两个不相等的根(称作特征根)α、β
则an=A*α^n+B*β^n
其中常数A、B的值由初始值a1、a2的值确定.
ii.若其有两个相等的根α
则an=(A*n+B)*α^n
其中常数A、B的值由初始值a1、a2的值确定.
最终可得:
当{an}有两个不等的特征根为根α,β时
由
a(n+2)-α*a(n+1)=β^(n-1)*(a2-α*a1)
a(n+2)-β*a(n+1)=α^(n-1)*(a2-β*a1)
得
an=((a2-β*a1)/(α-β))*α^(n-1)-((a2-β*a1)/(α-β))*β^(n-1)
或由
A*α+B*β=a1
A*α^2+B*β^2=a2
可得
A=(a2-β*a1)/(α^2-α*β)
B=(a2-β*a1)/(β^2-α*β)
得
an=((a2-β*a1)/(α-β))*α^(n-1)+((a2-β*a1)/(β-α))*β^(n-1)
当特征根为重根α时
由
an-α*a(n-1)=α^(n-2)*(a2-α*a1)
α*a(n-1)-α^2*a(n-2)=α^(n-2)*(a2-α*a1)
…
α^(n-2)*a2-α^(n-1)*a1=α^(n-2)*(a2-α*a1)
an-α^(n-1)*a1=(n-1)*α^(n-2)*(a2-α*a1)
得
an=((a2-a1*α)*n+2*a1*α-a2)*α^(n-2)
或由
(A+B)*α=a1
(2*A+B)*α^2=a2
可得
A=(a2-a1*α)/(α^2)
A=(2*a1*α-a2)/(α^2)
得
((a2-a1*α)*n+2*a1*α-a2)*α^(n-2)
由于
α+β=A
α*β=-B
由韦达定理,可构造一元二次方程
x^2-p*x-q=0
此即为二阶常系数齐次线性递推数列
a(n+2)=p*a(n+1)+q*an
的特徵方程
特殊的,当二阶常系数齐次线性递推数列
a(n+2)=p*a(n+1)+q*an
的特徵根为重根α=1时
即p=2,q=-1
a(n+2)=2*a(n+1)-an
此时,二阶常系数齐次线性递推数列
a(n+2)=2*a(n+1)-an
为等差数列
不动点法:
递推式:
a(n+1)=(A*an+B)/(C*an+D)
(n∈N*,A,B,C,D为常数,C不为0,AD-BC不为0,a1与a2不等)
其特征方程为x=(A*x+B)/(C*x+D)
特征方程的根称为该数列的不动点
这类递推式可转化为等差数列或等比数列
1)若x=(A*x+B)/(C*x+B)有两个不等的根α、β,则有:
(a(n+1)-α)/(a(n+1)-β)=k*((an-α)/(an-β))
其中k=(A-α*C)/(A-β*C)
x=(A*x+B)/(C*x+D)
C*x^2+(D-A)*x-B=0
α不等于β
(D-A)^2+4*B*C不等于0
C*α^2+(D-A)*α-B=0
C*α^2-A*α=B-α*D
a(n+1)-α=(A*an+B-C*α*an-α*D)/(C*an+D)=(A*an-C*α*an+C*α^2-A*α)/(C*an+D)=(A-C*α)*(an-α)/(C*an+D)
a(n+1)-β=(A*an+B-C*β*an-β*D)/(C*an+D)=(A*an-C*β*an+C*β^2-A*β)/(C*an+D)=(A-C*β)*(an-β)/(C*an+D)
(a(n+1)-α)/(a(n+1)-β)=(A-α*C)/(A-β*C)*((an-α)/(an-β))
由
(an-α)/(an-β)=((A-α*C)/(A-β*C))^(n-1)*((a1-α)/(a1-β))
得
an=(β*(((A-α*C)/(A-β*C))^(n-1))*((a1-α)/(a1-β))-α)/(((((A-α*C)/(A-β*C))^(n-1))*((a1-α)/(a1-β))-1)
=(β*(a1-α)*(A-α*C)^(n-1)-α*(a1-β)*(A-β*C)^(n-1))/((a1-α)*(A-α*C)^(n-1)-(a1-β)*(A-β*C)^(n-1))
2)若x=(A*x+B)/(C*x+B)有重根α,则有
1/(a(n+1)-α)=1/(an-α)+k
其中k=(2*C)/(A+D)
x=(A*x+B)/(C*x+D)
C*x^2+(D-A)*x-B=0
C*α^2+(D-A)*α-B=0
α=(A-D)/(2*C)
a(n+1)-α=(A-C*α)*(an-α)/(C*an+D)
1/(a(n+1)-α)=((C*an+D)/(A-C*α))*(1/(an-α))
=1/(an-α)+(C*an+D-A+((A-D)/(2*C))*C)/((A-(A-D)/(2*C)*C)*(an-(A-D)/(2*C)))=1/(an-α)+(C*an+C*(D-A)/(2*C))/(((A+D)/2)
查看更多