问题标题:
数学极限lim(x→0)((x^3)/(3*x^2-1))lim(x→+无穷)(√x(x+2)-√(x^2-x+1))lim(x→1)(tan(x-1))/(x^2-1)
问题描述:

数学极限lim(x→0)((x^3)/(3*x^2-1))lim(x→+无穷)(√x(x+2)-√(x^2-x+1))lim(x→1)(tan(x-1))/(x^2-1)

戴耀回答:
  lim(x→0)((x^3)/(3*x^2-1))   =lim(x→0)3x^2/6x=0   lim(x→+∞)(√x(x+2)-√(x^2-x+1))=lim(x→+∞)(√(x+1)^2-1-√x-1/2)^2+3/4)   =lim(x→+∞)(x+1-(x-1/2))   =3/2   lim(x→1)(tan(x-1))/(x^2-1)   =lim(x→1)(sin(x-1)/cos(x-1)(x^2-1)   =lim(x→1)(sin(x-1)/cos(x-1)(x-1)(x+1)当x-1→0limsinx=limx   所以lim(x→1)(sin(x-1)/cos(x-1)(x-1)(x+1)   =lim(x→1)1/cos(x-1)(x+1)   =1/2
查看更多
数学推荐
热门数学推荐