问题标题:
求解答几道微分函数题(1)(x-2xy-y^2)dy+y^2dx=0(2)xy’lnsiny+cosy(1-xcosy)=0(3)(x+1/√(y^2-x^2))dx+(1-x/√(y^2-x^2))dy=0(4)(x^2+y^2+2x)dx+2ydy=0哪位解答一下谢谢了~
问题描述:

求解答几道微分函数题

(1)(x-2xy-y^2)dy+y^2dx=0

(2)xy’lnsiny+cosy(1-xcosy)=0

(3)(x+1/√(y^2-x^2))dx+(1-x/√(y^2-x^2))dy=0

(4)(x^2+y^2+2x)dx+2ydy=0

哪位解答一下谢谢了~

童胜勤回答:
  (1)(x-2xy-y²)dy+y²dx=0   y²dx-2xydy=(y²-x)dy   (y²dx-2xydy)/y^4=(1/y²-x/y^4)dy   d(x/y²)=(1/y²-x/y^4)dy   令x/y²=u   du=(1/y²-u/y²)dy   du/(1-u)=dy/y²   d(1-u)/(1-u)=-dy/y²   ln(1-u)=1/y+C1   1-u=Ce^(1/y)   u=1-Ce^(1/y)   x=y²-Cy²e^(1/y)   (4)(x²+y²+2x)dx+2ydy=0   (x²+y²+2x)dx+d(y²)=0   令y²=u   (x²+2x+u)dx+du=0   u'+u=-x²-2x   u=e^(-x)[∫(-x²-2x)e^xdx+C]=e^(-x)[-x²e^x+C]=-x²+Ce^(-x)   即y²=-x²+Ce^(-x)   另外两个不会
查看更多
数学推荐
热门数学推荐