问题标题:
【在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①△AEF≌△AED;②∠AED=45°;③BE+DC=DE;④BE2+DC2=DE2.其中正确的是()】
问题描述:
在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:
①△AEF≌△AED;
②∠AED=45°;
③BE+DC=DE;
④BE2+DC2=DE2.
其中正确的是()
A.②④
B.①④
C.②③
D.①③
李森生回答:
①根据旋转的性质知∠CAD=∠BAF,AD=AF,
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°.
∴∠EAF=45°,
∴△AEF≌△AED;
故①正确;
②∵∠DAE=45°,若∠AED=45°,
那么∠ADE=90°,而AD不一定与BC垂直,
故②不正确;
③根据①知道△ADE≌△AFE,得CD=BF,DE=EF,
∴BE+DC=BE+BF>DE=EF,
故③错误;
④∵∠FBE=45°+45°=90°,
∴BE2+BF2=EF2,
∵△ADC绕点A顺时针旋转90°后,得到△AFB,
∴△AFB≌△ADC,
∴BF=CD,
又∵EF=DE,
∴BE2+CD2=DE2,故④正确.
故选B.
查看更多