问题标题:
(2014•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.
问题描述:
(2014•荆州)如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,则有DF=BE(不必证明).将正方形ABCD绕点A逆时针旋转一定角度α(0°<α<90°)后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.
沙朝锋回答:
DF=BE还成立;
理由:∵正方形ABCD绕点A逆时针旋转一定角度α,
∴∠FAD=∠EAB,
在△ADF与△ABE中
AF=AE∠FAD=∠EABAD=AB
查看更多