问题标题:
已知三角函数求角x1、x2是方程x^2-xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值
问题描述:
已知三角函数求角
x1、x2是方程x^2-xsin(π/5)+cos(4π/5)=0的两根,求arctanx1+arctanx2的值
李天昀回答:
x1+x2=-b/a=sin(π/5),x1*x2=c/a=cos(4π/5),那么tan(arctanx1+arctanx2)={【tan(arctanx1)】+【tan(arctanx2)】}/【1-tan(arctanx1)*tan(arctanx2)】=(x1+x2)/(1-x1*x2)=sin(π/5)/【1-cos(4π/5)】,剩...
查看更多