问题标题:
过椭圆x2/a2+y2/b2=1的左焦点F任做一条与两坐标轴都不垂直的弦AB,若点M在轴上,且使得MF为三角形AMB的一条内角平分线,则称点M为椭圆的左特征点,那么左特征点M一定是(A)A椭圆左准线与轴的交点B
问题描述:

过椭圆x2/a2+y2/b2=1的左焦点F任做一条与两坐标轴都不垂直的弦AB,若点M在轴上,且使得MF为三角形AMB的一条内角平分线,则称点M为椭圆的左特征点,那么左特征点M一定是(A)

A椭圆左准线与轴的交点B坐标原点

C椭圆右准线与轴的交点D右交点

对不起,打错了,第四个选项是右焦点!

秦炜华回答:
  答案为(A).A到准线垂足为C,B的为D.由平行线性质易知:AF:BF=CM:DM.椭圆上的点到准线距离等于该点到相应焦点距离,所以:AC:BD=CM:DM.易得:三角形ACM与BDM相似.则角AMC=角BMD.角AMF=角BMF
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《过椭圆x2/a2+y2/b2=1的左焦点F任做一条与两坐标轴都不垂直的弦AB,若点M在轴上,且使得MF为三角形AMB的一条内角平分线,则称点M为椭圆的左特征点,那么左特征点M一定是(A)A椭圆左准线与轴的交点B|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元