问题标题:
数列证明题一题设数列{An}满足:A1=1,且当n∈N*时,An^3+An^2×[1-A(n+1)]+1=A(n+1)求证:数列{An}是递增数列.
问题描述:

数列证明题一题

设数列{An}满足:A1=1,且当n∈N*时,

An^3+An^2×[1-A(n+1)]+1=A(n+1)

求证:数列{An}是递增数列.

来煜坤回答:
  证明:由题   A(n+1)=[An^3+An^2+1]/[An^2+1]   =[An^3+An+An^2+1-An]/[An^2+1]   =An+1-An/[An^2+1]   故A(n+1)-A(n)   =1-An/[An^2+1]   =[An^2+1-An]/[An^2+1]   =[(An-1/2)^2+3/4]/[An^2+1]   >=0   故A(n+1)>=A(n)   故数列{An}是递增数列
查看更多
数学推荐
热门数学推荐