问题标题:
(2013•浙江)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一
问题描述:

(2013•浙江)如图,点P(0,-1)是椭圆C1:x2a2+y2b2=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.

(1)求椭圆C1的方程;

(2)求△ABD面积的最大值时直线l1的方程.

李茂青回答:
  (1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为x24+y2=1;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx-1.又圆C2:x2+y2=4的圆心O(0,0)到...
查看更多
其它推荐
热门其它推荐