问题标题:
顶级难数学计算(代数式)1/x-y—1/x+y+2y/x^2+y^2—4x^2y/x^4+y^4分式形式宇宙级别题
问题描述:
顶级难数学计算(代数式)
1/x-y—1/x+y+2y/x^2+y^2—4x^2y/x^4+y^4
分式形式
宇宙级别题
方清回答:
1/(x-y)—1/(x+y)+2y/(x^2+y^2)—4x^2y/(x^4+y^4)
={1/(x-y)—1/(x+y)++2y/(x^2+y^2)—4x^2y/(x^4+y^4)
=2y/(x^2-y^2)+2y/(x^2+y^2)—4x^2y/(x^4+y^4)
={2y/(x^2-y^2)+2y/(x^2+y^2)}—4x^2y/(x^4+y^4)
=4x^2y/(x^4-y^4)-4x^2y/(x^4+y^4)
=4x^6y/(x^8-y^8)
这题一看似乎有些麻烦,因为直接把四项分母化成统一挺麻烦的,但是计算时可以每两项加一次然后这么算几次,每次都是把两项分母化成统一,这样少简单些
查看更多