问题标题:
顶级难数学计算(代数式)1/x-y—1/x+y+2y/x^2+y^2—4x^2y/x^4+y^4分式形式宇宙级别题
问题描述:

顶级难数学计算(代数式)

1/x-y—1/x+y+2y/x^2+y^2—4x^2y/x^4+y^4

分式形式

宇宙级别题

方清回答:
  1/(x-y)—1/(x+y)+2y/(x^2+y^2)—4x^2y/(x^4+y^4)   ={1/(x-y)—1/(x+y)++2y/(x^2+y^2)—4x^2y/(x^4+y^4)   =2y/(x^2-y^2)+2y/(x^2+y^2)—4x^2y/(x^4+y^4)   ={2y/(x^2-y^2)+2y/(x^2+y^2)}—4x^2y/(x^4+y^4)   =4x^2y/(x^4-y^4)-4x^2y/(x^4+y^4)   =4x^6y/(x^8-y^8)   这题一看似乎有些麻烦,因为直接把四项分母化成统一挺麻烦的,但是计算时可以每两项加一次然后这么算几次,每次都是把两项分母化成统一,这样少简单些
查看更多
数学推荐
热门数学推荐