问题标题:
用数学归纳法证明:1*n+2*(n-1)+3*(n-2)+...+n*1=1/6*n(n+1)(n+2)?
问题描述:

用数学归纳法证明:1*n+2*(n-1)+3*(n-2)+...+n*1=1/6*n(n+1)(n+2)?

范垂义回答:
  n=1时,左边=1*1=1   右边=1/6*1*2*3=1   左边=右边,等式成立!   假设n=k时成立(k>1)即:   1*k+2(k-1)+3(k-2)+…+(k-1)*2+k*1=(1/6)k(k+1)(k+2)   当n=k+1时;   左边   =1*(k+1)+2(k+1-1)+3(k+1-2)+…+(k+1-1)*2+(k+1)*1   =1*k+1*1+2(k-1)+2*1+…+k*1+k+(k+1)   =[1*k+2(k-1)+…+(k-1)*2+k*1]+1+2+3+…+k+(k+1)   =(1/6)k(k+1)(k+2)+1+2+3+…+k+(k+1)   =(1/6)k(k+1)(k+2)+1/2*(k+1)*(k+2)   =(1/6)(k+1)(k+2)(k+3)   =(1/6)(k+1)[(k+1)+1][(k+1)+2]   =右边   原式也成立!   综上可知,原式为真!
查看更多
数学推荐
热门数学推荐