问题标题:
【经过点P(2,-3)作圆x²2xy²=24的弦AB,使得点P平分弦AB,则弦AB所在直线的方程为】
问题描述:

经过点P(2,-3)作圆x²2xy²=24的弦AB,使得点P平分弦AB,则弦AB所在直线的方程为

吕岩回答:
  点P在圆内,则过点P且被点P平分的弦所在的直线,此直线和圆心与B的连线垂直,又圆心与B的连线的斜率是-1,则所求直线的斜率为1,且过点P(2,-3),则所求直线方程是:x-y-5=0
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《【经过点P(2,-3)作圆x²2xy²=24的弦AB,使得点P平分弦AB,则弦AB所在直线的方程为】|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元