问题标题:
【求不定积分x^2√a^2-x^2】
问题描述:
求不定积分x^2√a^2-x^2
陈跃斌回答:
∫x²*√(a²-x²)dx
令x=asint,那么dx=d(asint)=acostdt
∴原式=∫(asint)²*√[a²-(asint)²]*acostdt
=∫a²sin²t*acost*acostdt
=∫a^4*sin²t*cos²tdt
=∫a^4*(sintcost)²dt
=∫1/4*a^4*sin²2tdt
=∫1/8*a^4*(1-cos4t)dt
=1/8*a^4*t-1/32*a^4*sin4t+C
而∵x=asint,∴sint=x/a,∴cost=[√(a²-x²)]/a
∴sin2t=2sintcost=[2x√(a²-x²)]/a²
cos2t=cos²t-sin²t=(a²-2x²)/a²
∴sin4t=2sin2tcos2t=[4x(a²-2x²)√(a²-x²)]/a^4
∴原式=1/8*a^4*arcsin(x/a)-1/8*x(a²-2x²)√(a²-x²)+C
查看更多