问题标题:
【求不定积分x^2√a^2-x^2】
问题描述:

求不定积分x^2√a^2-x^2

陈跃斌回答:
  ∫x²*√(a²-x²)dx   令x=asint,那么dx=d(asint)=acostdt   ∴原式=∫(asint)²*√[a²-(asint)²]*acostdt   =∫a²sin²t*acost*acostdt   =∫a^4*sin²t*cos²tdt   =∫a^4*(sintcost)²dt   =∫1/4*a^4*sin²2tdt   =∫1/8*a^4*(1-cos4t)dt   =1/8*a^4*t-1/32*a^4*sin4t+C   而∵x=asint,∴sint=x/a,∴cost=[√(a²-x²)]/a   ∴sin2t=2sintcost=[2x√(a²-x²)]/a²   cos2t=cos²t-sin²t=(a²-2x²)/a²   ∴sin4t=2sin2tcos2t=[4x(a²-2x²)√(a²-x²)]/a^4   ∴原式=1/8*a^4*arcsin(x/a)-1/8*x(a²-2x²)√(a²-x²)+C
查看更多
数学推荐
热门数学推荐