问题标题:
设f(x)是定义在R上的奇函数,在区间(-∞,0)上有xf′(x)+f(x)<0且f(-2)=0.则不等式f(2x)<0的解集为___.
问题描述:
设f(x)是定义在R上的奇函数,在区间(-∞,0)上有xf′(x)+f(x)<0且f(-2)=0.则不等式f(2x)<0的解集为___.
刘丕香回答:
由题意设g(x)=xf(x),
则g′(x)=[xf(x)]′=xf′(x)+f(x),
∵在区间(-∞,0)上有xf′(x)+f(x)<0,
∴函数g(x)在区间(-∞,0)上是减函数,
∵f(x)是定义在R上的奇函数,
∴g(x)=xf(x)是R上的偶函数,
∴函数g(x)在区间(0,+∞)上是增函数,
∵f(-2)=0,∴f(2)=0;
即g(2)=g(-2)=0且,(0)=f(0)=0,
∴f(2x)<0化为g(2x)>02x<0
查看更多