问题标题:
【证明等比数列中,m+n=p+q=2k,则aman=apaq=a^2k】
问题描述:
证明等比数列中,m+n=p+q=2k,则aman=apaq=a^2k
娄利军回答:
设公比为t.
aman=[a1t^(m-1)][a1t^(n-1)]
=a1^2t^(m+n-2)
=a1^2t^(2k-2)
=[a1t^(k-1)]^2
=(ak)^2
apaq=[a1t^(p-1)][a1t^(q-1)]
=a1^2t^(p+q-2)
=a1^2t^(2k-2)
=[a1t^(k-1)]^2
=(ak)^2
aman=apaq=(ak)^2
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日