问题标题:
如图所示,地面和半圆轨道面均光滑.质量M=1kg、长L=4m的小车放在地面上,其右端与墙壁的距离为S=3m,小车上表面与半圆轨道最低点P的切线相平.现有一质量m=2kg的滑块(不计大小)以v0=6m/
问题描述:

如图所示,地面和半圆轨道面均光滑.质量M=1kg、长L=4m的小车放在地面上,其右端与墙壁的距离为S=3m,小车上表面与半圆轨道最低点P的切线相平.现有一质量m=2kg的滑块(不计大小)以v0=6m/s的初速度滑上小车左端,带动小车向右运动.小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2.

(1)求小车与墙壁碰撞时的速度;

(2)要滑块能沿圆轨道运动而不脱离圆轨道,求半圆轨道的半径R的取值.

李新飞回答:
  (1)设滑块与小车的共同速度为v1,滑块与小车相对运动过程中动量守恒,有 mv0=(m+M)v1 代入数据解得 v1=4m/s 设滑块与小车的相对位移为 L1,由系统能量守恒定律,有 μmgL1=12m...
查看更多
其它推荐
热门其它推荐