问题标题:
【初一(上)寒假作业数学题第37面第十七题17.为“美化校园”,学校将一批树苗按下列原则分配给各班:第一班取走100棵,又取走余下的1/10;接着第二班取走200棵,又取走余下的1/10……如此继】
问题描述:
初一(上)寒假作业数学题第37面第十七题
17.为“美化校园”,学校将一批树苗按下列原则分配给各班:第一班取走100棵,又取走余下的1/10;接着第二班取走200棵,又取走余下的1/10……如此继续下去,最后的树苗被各班全部取完,而且各班所得的树苗都相等.问有多少棵树苗,多少个班?
我知道要设共有X棵树苗,并且第一班的数量可以表示成100+(X-100)/10,可是第二班不应该表示成200+(X-100-200)/10么?但如果这样列方程就无解了呐!谢谢各位帮帮忙吧!
麻烦各位用初一的一元一次方程解决问题,小女子是初一的学生,谢谢!
任俊峰回答:
你的方程列错了,应是:
100+(X-100)/10=200+【x-(100+(X-100)/10)-200】/10
要把一班的树减干净
方程的解为X=8100
经检验正确.一个班取100+8000/10=900(棵)
8100/900=9
答:有8100棵树苗,9个班.
查看更多