问题标题:
【当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是()A.-1B.0C.1D.2】
问题描述:

当x-y=1时,那么x4-xy3-x3y-3x2y+3xy2+y4的值是()

A.-1

B.0

C.1

D.2

苏运霖回答:
  x4-xy3-x3y-3x2y+3xy2+y4   =(x4-xy3)+(y4-x3y)+(3xy2-3x2y)   =x(x3-y3)+y(y3-x3)+3xy(y-x)   =(x3-y3)(x-y)-3xy(x-y)   =(x-y)(x3-y3-3xy)   =(x-y)[(x-y)(x2+xy+y2)-3xy]   把x-y=1代入得,   原式=1×[1×(x2+xy+y2)-3xy]   =x2-2xy+y2=(x-y)2   ∵x-y=1,   ∴原式=1.   故选C.
查看更多
数学推荐
热门数学推荐