问题标题:
求三角形三角函数证明题做法,证明:(1)对任意三角形ABC,tanA/2*tanB/2+tanB/2*tanC/2+tanC/2*tanA/2=1(2)在非直角三角形ABC,tanA+tanB+tanC=tanA*tanB*tanC
问题描述:
求三角形三角函数证明题做法,
证明:(1)对任意三角形ABC,tanA/2*tanB/2+tanB/2*tanC/2+tanC/2*tanA/2=1(2)在非直角三角形ABC,tanA+tanB+tanC=tanA*tanB*tanC
毛赞猷回答:
(1)tanA/2×tanB/2+tanB/2×tanC/2+tanC/2×tanA/2
=tanA/2×tanB/2+tanC/2×(tanA/2+tanB/2)
=tanA/2×tanB/2+tan[90-(A+B)/2]×(tanA/2+tanB/2)
=tanA/2×tanB/2+cot(A/2+B/2)×(tanA/2+tanB/2)
=tanA/2×tanB/2+(tanA/2+tanB/2)/tan(A/2+B/2)
=tanA/2×tanB/2+1-tanA/2×tanB/2
=1
(2)∵tan(A+B)=tanA+tanB/1-tanA*tanB
tan(A+B)=tan(π-C)=-tanC
∴tanA+tanB/1-tanA*tanB=-tanC
整理移项即得
tanA+tanB+tanC=tanA*tanB*tanC
查看更多