问题标题:
在底面是正方形的四棱锥P-ABCD中,PA=AC=2,PB=PD=更号6,(2)已知点E在PD上,且PE:ED=2:1,点F为棱PC的中点,证明BF平行于平面AEC.
问题描述:
在底面是正方形的四棱锥P-ABCD中,PA=AC=2,PB=PD=更号6,
(2)已知点E在PD上,且PE:ED=2:1,点F为棱PC的中点,证明BF平行于平面AEC.
陈峰回答:
证明:连接BD,交AC与O,取PE中点G,连接BG,FG,
又PE:ED=2:1
所以E为DG中点,G为PE中点
又因为F为PC中点
所以在三角形PEC中有FG‖EC
所以FG‖平面AEC
因为ABCD为正方形
所以O为AC中点,又E为DG中点
所以在三角形BGD中有BG‖OE
所以BG‖平面AEC
所以平面BFG‖平面AEC
所以BF平行于平面AEC
查看更多