问题标题:
已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?
问题描述:
已知函数f(x)=Asin(ωx+φ),x∈R,(其中A>0,ω>0,0<φ<π/2)的周期为π且图象上的一个最低点为M(2∏/3,-2).求F(X)的解析式,当X∈[0,∏/12]时,F(X)的最值?
狄东宁回答:
因为周期为π,则T=2π/ω=πω=2所以f(x)=Asin(2x+φ)因为最低点为M(2∏/3,-2)则最底点是sin(2*2π/3+φ)=sin(4π/3+φ)=-1则4π/3+φ=2kπ-π/2φ=2kπ-π/2-4π/3=2kπ-11π/6=2kπ-2π+π/6=2(k-1)π+π/6因...
查看更多
八字精批
八字合婚
八字起名
八字财运
2024运势
测终身运
姓名详批
结婚吉日