问题标题:
积分(1-cosx)dx/(x-sinx)积分[(1-cosx)dx]/(x-sinx)要具体的啊..上面那题不要做了.要做也可以.换成这题积分[(x-3)dx]/[(x^2)+2x+3)
问题描述:

积分(1-cosx)dx/(x-sinx)

积分[(1-cosx)dx]/(x-sinx)

要具体的啊..

上面那题不要做了.要做也可以.

换成这题

积分[(x-3)dx]/[(x^2)+2x+3)

孙兴亚回答:
  ∫[(1-cosx)dx]/(x-sinx)   =∫d(x-sinx)/(x-sinx)   =ln(x-sinx)+C   原式=∫(x+1-4)dx/(x²+2x+3)   =∫(x+1)dx/(x²+2x+3)-∫4dx/(x²+2x+3)   =1/2∫(2x+2)dx/(x²+2x+3)-∫4dx/[(x+1)²+2]   =1/2∫d(x²+2x+3)dx/(x²+2x+3)-2∫dx/[(x+1)²/2+1]   =1/2*ln(x²+2x+3)-2∫dx/[(x/√2+1/√2)²+1]   =1/2*ln(x²+2x+3)-2√2∫d(x/√2+1/√2)/[(x/√2+1/√2)²+1]   =1/2*ln(x²+2x+3)-2√2arctan(x/√2+1/√2)+C
查看更多
数学推荐
热门数学推荐