问题标题:
(2010•唐山一模)如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=2222.
问题描述:
(2010•唐山一模)如图,在直四棱柱ABCD-A1B1C1D1中,∠ADC=90°,且AA1=AD=DC=2,M∈平面ABCD,当D1M⊥平面A1C1D时,DM=2
2
2
2
.
郭密回答:
∵D1M⊥平面A1C1D,∴A1D⊥D1M,设D1M在面ADD1A1上的射影为D1M1,由三垂线定理逆定理,D1M1⊥A1D,∵AA1=AD=DC=2,∴D1A⊥A1D,M1与A重合.同理M在面DCC1D1上的射影为C.所以AMCD是正方形,∴DM2=DA2+DC2=8,DM=22
查看更多