问题标题:
sinx-1次方的不定积分是多少
问题描述:

sinx-1次方的不定积分是多少

金通回答:
  =积分dx/sinx   =积分(sin^2x+cos^2x)dx/sinx,^2表示平方   =积分sinxdx+积分cos^2xdx/sinx   =-cosx+积分cos^2xsinxdx/sin^2x   =-cosx+积分cos^2xsinxdx/(1-cos^2x)   第二个令t=cosx   dt=-sinxdx   =-cosx-积分t^2dt/(1-t^2)   =-cosx+积分dt+积分dt/(t^2-1)   =-cosx+t+(1/2)积分dt[1/(t-1)-1/(t+1)]   =-cosx+cosx+(1/2)积分[dt/(t-1)-dt/(t+1)]   =(1/2)(ln|t-1|-ln|t+1|)+C   =(1/2)ln|(cosx-1)/(cosx+1)|+C   代入cosx=(1-tan^2(x/2))/(1+tan^2(x/2))   =(1/2)ln|tan^2(x/2)|+C   =ln|tan(x/2)|+C   =ln|(1-cosx)/sinx|+C   =ln|cscx-cotx|+C
查看更多
数学推荐
热门数学推荐