问题标题:
已知x1,x2是方程4ax2-4ax+a+4=0的两实根,是否能适当选取a的值,使得(x1-2x2)(x2-2x1)的值等于54______.
问题描述:

已知x1,x2是方程4ax2-4ax+a+4=0的两实根,是否能适当选取a的值,使得(x1-2x2)(x2-2x1)的值等于54______.

石立岸回答:
  显然a≠0由△=16a2-16a(a+4)≥0得a<0,由韦达定理知x1+x2=1,x1x2=a+44a,所以(x1−2x2)(x2−2x1)=5x1x2−2(x21+x22)=9x1x2−2(x1+x2)2=9(a+4)4a−2=a+364a若有(x1−2x2)(x2−2x1)=54,则a+364a=54,∴a=9...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《已知x1,x2是方程4ax2-4ax+a+4=0的两实根,是否能适当选取a的值,使得(x1-2x2)(x2-2x1)的值等于54______.|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元