问题标题:
设斜率为2的直线l过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若ΔOAF(O为坐标原点)的面积为4
问题描述:

设斜率为2的直线l过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若ΔOAF(O为坐标原点)的面积为4

马运华回答:
  因为抛物线y²=ax(a≠0)的焦点F(a/4,0),因此过点F且斜率为2的直线l的方程是y=2(x-a/4),令x=0,得y=-a/2,即A(0,-a/2),因为ΔOAF的面积为|OA||OF|/2=|a/4||-a/2|/2=4,即a²=64,所以a=±8,抛物线方程为y²...
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《设斜率为2的直线l过抛物线y²=ax(a≠0)的焦点F,且和y轴交于点A,若ΔOAF(O为坐标原点)的面积为4|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元