问题标题:
1x2+2x3+3x4=3分2x(3x4)+3分3x(3x4)=3分3x4x5规律计算2008x2009分之1x(1x2+2x3+3x4+.+2008x2009)
问题描述:
1x2+2x3+3x4=3分2x(3x4)+3分3x(3x4)=3分3x4x5规律计算2008x2009分之1x(1x2+2x3+3x4+.+2008x2009)
孙延春回答:
其实第n项=n*(n+1)=n^+n;则前n项的和为n(n+1)(2n+1)/6+n(n+1)/2=n(n+1)(n+2)/3.
题目:带入即可得2010/3
查看更多