问题标题:
【如果limf(x)=∞,limg(x)=0,那么lim[f(x)/g(x)]=∞么?此时是否能用极限的四则运算法则lim[f(x)/g(x)]=limf(x)/limg(x)=∞/0=∞(别说什么分母不能为零之类的,可看成∞*∞),lim[g(x)/f(x)]=o么?此时又是否满足极限】
问题描述:
如果limf(x)=∞,limg(x)=0,那么lim[f(x)/g(x)]=∞么?
此时是否能用极限的四则运算法则lim[f(x)/g(x)]=limf(x)/limg(x)=∞/0=∞(别说什么分母不能为零之类的,可看成∞*∞),lim[g(x)/f(x)]=o么?此时又是否满足极限的四则运算法则等于limg(x)/limf(x)=0/∞=0?感激不尽!
邓文胜回答:
对于lim[f(x)/g(x)]=limf(x)/limg(x)=∞/0=∞是不能直接运用四则运算的,但是可以变形使之成为lim[f(x)/g(x)]=lim{1/{(1/f(x))*g(x)}=1/(0*0)=∞也就是说此时可以运用,而对于limg(x)/limf(x)=0/∞=0是正确的,同时四...
查看更多