问题标题:
如图所示,在△ABC中,AB=AC,P是BC边上的一点,PE⊥AB,PF⊥AC,BD是AC边上的高.
问题描述:

如图所示,在△ABC中,AB=AC,P是BC边上的一点,PE⊥AB,PF⊥AC,BD是AC边上的高.

贾国光回答:
  这个题要证PE+PF=BD对吧   证明:过点P作PG垂直于BD,垂足为G   ∵PF⊥ACBD⊥AC   ∴四边形PFDG为矩形   ∴PF=DGPG∥DF   ∴∠C=∠GPB   ∵AB=AC∴∠C=∠ABC   ∴∠ABC=∠GPB   ∵PE⊥AB∴∠BEP=∠BGP=90°   ∵BP=BP   ∴△BEP≌△PGB(AAS)   ∴PE=BG   因为BG+DG=BD   所以PE+PF=BD
查看更多
八字精批 八字合婚 八字起名 八字财运 2024运势 测终身运 姓名详批 结婚吉日
已出生未出生
数学推荐
热门数学推荐
付费后即可复制当前文章
《如图所示,在△ABC中,AB=AC,P是BC边上的一点,PE⊥AB,PF⊥AC,BD是AC边上的高.|小学数学问答-字典翻译问答网》
限时特价:5.99元/篇原价:20元