问题标题:
(2012•通州区二模)如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一
问题描述:

(2012•通州区二模)如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为s.求:

(1)金属棒达到稳定速度的大小;

(2)金属棒从静止开始运动到cd的过程中,电阻R上产生的热量;

(3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

施一明回答:
  (1)当金属棒稳定运动时做匀速运动,则有F=mgsinθ+F安又安培力F安=B20L2v2R解得:v=mgRB20L2(2)金属棒从静止开始运动到cd的过程,由动能定理得: Fs−mgssinθ−W克安=12mv2−0解得:W克安=12...
查看更多
其它推荐
热门其它推荐