问题标题:
设数列an满足a1=a2=1,a3=2,且对正整数n都有an·an+1·an+2·an+3=an+an+1+an+2+an+3,,求a1+a2+a3+···+a100的值
问题描述:

设数列an满足a1=a2=1,a3=2,且对正整数n都有an·an+1·an+2·an+3=an+an+1+an+2+an+3,

,求a1+a2+a3+···+a100的值

洪文学回答:
  a1×a2×a3×a4=a1+a2+a3+a4   1×1×2×a4=1+1+2+a4   a4=4   a2×a3×a4×a5=a2+a3+a4+a5   1×2×4×a5=1+2+4+a5   7a5=7   a5=1=a1   a3×a4×a5×a6=a3+a4+a5+a6   2×4×1×a6=2+4+1+a6   7a6=7   a6=1=a2   a4×a5×a6×a7=a4+a5+a6+a7   4×1×1×a7=4+1+1+a7   3a7=6   a7=2=a3   …………   数列{an}是周期为4的周期数列,从第1项开始,按1,1,2,4循环,每4项循环一次.   100÷4=25,正好循环25次.   a1+a2+a3+...+a100=25×(1+1+2+4)=25×8=200
查看更多
数学推荐
热门数学推荐