问题标题:
【在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,交BC于D,DE⊥AB,垂足为E,若AB=20cm,则△DBE的周长是多少厘米`(写出证明过程】
问题描述:

在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,交BC于D,DE⊥AB,垂足为E,若AB=20cm,则△DBE的周长是多少厘米`

(写出证明过程

唐飞回答:
  因为<C=90度,AC=AB所以<ABC=<ACB=45度   因为DE垂直AB,所以<DEB=90度   因为<CBA=45度所以<BDE=45度,BD=DE   因为AD平分<CAB所以<CAD=<DAE   在三角形ADE和三角形ACD中   因为<AED=<ACD,<CAD=<DAE,AD=AD   所以三角形ADE全等于三角形ACD(AAS)   所以DE=CD,AE=AC   因为BD=DE,ED=CD所以CD=ED=BD   因为CD+DB=BC所以DE+BD=BC   因为BC=AC,AC=AE所以DE+BD=AE   因为AE+BE=AB,三角形DEB的周长等于DE+BE+BD=AB   所以三角形DEB的周长是AB的长度20cm.
查看更多
数学推荐
热门数学推荐