问题标题:
用Γ函数表示下列积分:(1)∫(0,+∞)e^[-(x^n]dx(n>0)(2)∫(0,1)[ln(1/x)]^pdx(p>-1)(1)中0是下限,+∞是上限,答案是(1/n)*Γ(1/n)(2)中0是下限,1是上限,答案是Γ(p+1)求详解
问题描述:
用Γ函数表示下列积分:(1)∫(0,+∞)e^[-(x^n]dx(n>0)(2)∫(0,1)[ln(1/x)]^pdx(p>-1)
(1)中0是下限,+∞是上限,答案是(1/n)*Γ(1/n)
(2)中0是下限,1是上限,答案是Γ(p+1)
求详解
刘宇蕾回答:
(1)∫(0,+∞)e^[-(x^n]dx令x^n=tx=t^(1/n)dx=(1/n)t^[(1/n)-1]dt∫(0,+∞)e^[-(x^n]dx)=(1/n)∫(0,+∞)t^[(1/n)-1]e^(-t)dt=(1/n)*Γ(1/n)(2)∫(0,1)[ln(1/x)]^pdx令ln(1/x)=tx=e^(-t)dx=-e^(-t)dtx→0t→+∞...
查看更多