问题标题:
团结力量大!快来解决初中生的疑惑证:相切(内切、外切)的两圆的圆心,与切点在同一直线上.要求:用公理(定理注意不要用求证的内容)如麻烦,可证内切或外切的一个,反正触类旁通嘛
问题描述:
团结力量大!快来解决初中生的疑惑
证:相切(内切、外切)的两圆的圆心,与切点在同一直线上.
要求:用公理(定理注意不要用求证的内容)如麻烦,可证内切或外切的一个,反正触类旁通嘛
有图虽好,不强求.
1、2楼
切点是公共的,但切线怎么可以证是公共的?
别介,我还认为有两个公共的切线呢
对3楼,无语
贾春荣回答:
两个圆的交点只有一个时,我们就说这两个圆相切.
所以我用反证法:
设切点不在两圆心连线AB上.公切点为C,公切线为H2
作一个圆A圆心上的垂线H1,则H1垂直于AC
因为过切点的公切线H2垂直于AC
则跟所设矛盾.即不成立
所以切点和两圆心在一直线上
查看更多