问题标题:
八年级数学11-13章全部概念
问题描述:

八年级数学11-13章全部概念

黄小飞回答:
  全等三角形   能够完全重合的两个三角形叫做全等三角形,“全等”用符号“≌”表示,读作“全等于”.   当两个三角形完全重合时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角.   由此,可以得出:全等三角形的对应边相等,对应角相等.   证明:有3种   1.三组对应边分别相等(简称SSS)   2.有一个角和夹这个角的两条夹边对应相等的两个三角形全等(SAS)   3.有两个角和这两个角的夹边对应相等的两个三角形全等(ASA)   注:S是边的英文缩写,A是角的英文缩写   由3可推到   4.有两角和其中一个角的对边对应相等的两个三角形全等(AAS)   并且由这些可证明:   线段垂直平分线上的点到线段两端点的距离相等.   角平分线上的点到角两边的距离相等   还有一种判定方法   直角三角形独有:   斜边和一条直角边对应相等的两个直角三角形全等(HL)   全等三角形定义   1、   两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形,而两个三角形全等的判定是几何证明的有力工具.   2、三角形全等的判定公理及推论有:   (1)“边角边”简称“SAS”   (2)“角边角”简称“ASA”   (3)“边边边”简称“SSS”   (4)“角角边”简称“AAS”   注意:在全等的判定中,没有AAA和SSA,这两种情况都不能唯一确定三角形的形状.   3、全等三角形的性质:   全等三角形的对应角相等、对应边相等.   注意:   1)性质中三角形全等是条件,结论是对应角、对应边相等.   而全等的判定却刚好相反.   2)利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键.在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便.
查看更多
数学推荐
热门数学推荐